
SELF-STABILIZING `-EXCLUSION:
A CORRECTNESS PROOF

by

MILOSLAV BESTA

PROSPECTUS

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2002

MAJOR: COMPUTER SCIENCE

Approved by:

Advisor Date

Contents

List of Figures . ii

1 Introduction 1

2 Problem Background 3

3 Self-Stabilizing `-Exclusion 7

4 Proposed Research Goals and Methodology 18

5 Conclusion 21

Bibliography 22

i

List of Figures

3.1 Diagonal algorithm . 12

3.2 Implementation of function report . 13

3.3 Implementation of procedure read-all-VEC 14

3.4 Combined algorithm . 15

ii

1

Chapter 1

Introduction

Presently computer software is used in virtually every area of human activity.

Software can be found not only on desktop computers, but also in many machines

and devices that are used in manufacturing, communications, defense, transporta-

tion, aerospace, e-commerce, and health care. Software is used more and more to

solve larger and more demanding problems. As the size of problems grows, software

also becomes larger and more complex. At the same time, requirements on software

performance, real-time behavior, fault tolerance, security, and dependability are in-

creasing. Distributed computing has become an important part of the battle against

larger and more demanding requirements.

In many areas, high requirements are imposed on fault tolerance of the computer

system. A fault tolerant system must be reliable and must be able to tolerate failures

up to some specified degree. Such systems are generally built from components that

are fault tolerant as well. One of the vital parts of every distributed fault tolerant

system is its ability to reliably share data and resources. For this task the use of

a reliable, fault tolerant mutual exclusion algorithm (when several processes compete

for a single resource) or `-exclusion algorithm (when at most ` processes can use an

instance of the resource at the same time) is essential.

Self-stabilizing algorithms are inherently fault tolerant. When a transient failure

occurs in a system, the fault can affect shared data and put the system into an illegal

2

(unstable) state. When a self-stabilizing algorithm is used, eventually the system will

stabilize into a legal state without any outside intervention or system re-initialization.

Thereafter, the system behaves as if no transient fault ever occurred.

A self-stabilizing `-exclusion algorithm combines an `-exclusion algorithm with the

self-stabilization after a transient failure occurs. The first and only self-stabilizing `-

exclusion algorithm that satisfies all the requirements imposed on self-stabilization

and `-exclusion was published by Abraham, Dolev, Herman, and Koll (1997, 2001).

The algorithm there does not impose any restrictions on the communication topology

and tolerates up to ` crashes of processes.

The above mentioned self-stabilizing `-exclusion algorithm is complicated. Since

the self-stabilizing `-exclusion algorithm is intended to be used in fault tolerant sys-

tems, high requirements on correctness and reliability of the algorithm are imposed.

To make sure the algorithm in (2001) is truly reliable and correct a rigorous correct-

ness proof of the algorithm is needed.

This dissertation prospectus proposes to conduct research on correctness of the

above mentioned algorithm. We propose to thoroughly analyze the algorithm and

develop a correctness proof of the algorithm. As the methodology for the proof

development, we propose to use the rigorous approach and notation of Linear Time

Temporal Logic, see Manna and Pnueli (1992).

The remainder of the prospectus is organized as follows. In Chapter 2, we discuss

the problem background and the concepts needed for presentation of the algorithm.

In Chapter 3, the self-stabilizing `-exclusion algorithm is presented. There, we discuss

the structure of the algorithm, the subcomponents, and the underlying ideas of its

implementation. In Chapter 4 the proposed areas of research and expected results

are discussed. There, we also give an overview and justification of the methodology

that is planned to be used.

3

Chapter 2

Problem Background

The problem of mutual exclusion is one of the fundamental problems in computer

science. Assume that there exist N sequential processes sharing a resource. When

a process executes part of its code known as the critical section, it is required that

none of the other processes is in its critical section. Any process wishing to enter its

critical section must do so within a finite amount of time. If a process is stopped

outside its critical section, it cannot block the other processes from entering their

critical sections. Nothing about the relative speeds of the processes is assumed.

The first solution of the mutual exclusion problem was published by Dijkstra (1965),

who generalized Dekker’s solution of mutual exclusion between two processes. Later,

several other solutions were given, e.g., by Peterson (1981), Lamport (1986b), and

Lycklama and Hadzilacos (1991).

In 1973, Dijkstra introduced the concept of self-stabilization. The concept was

demonstrated on the problem of mutual exclusion. The mutual exclusion problem

can be described by an invariant on states. The invariant expresses that, in every

state, there is at most one process in the critical section. That invariant holds in the

initial state of the system as well as in all states that can be reached during execution

of the system. When the shared memory is truly distributed, a local copy of the

shared data is maintained. In case of a transient fault within a participating process,

the shared data can become inconsistent and the system can reach an illegal state.

4

Consequently, the invariant of mutual exclusion is violated. Once an illegal state is

reached, the system usually stays in an illegal state forever.

A system is called self-stabilizing if, regardless of the initial state and regardless

of the transitions taken by the system, the system always reaches a legal state after

taking a finite number of transitions and, thereafter, remains in a legal state. It is

assumed that the system is fair and will take an infinitely enabled transition infinitely

often. Thus, a self-stabilizing system recovers from a transient failure without outside

intervention. Three self-stabilizing solutions of the mutual exclusion problem were

given by Dijkstra in (1974).

Fischer, Lynch, Burns, and Borodin (1979) generalized the problem of mutual

exclusion to the case where some number ` ≥ 1 of processes (but not more) are

permitted to be simultaneously in their critical sections. If there are fewer than

` processes in their critical sections, it is possible for another process to enter its

critical section. This mutual exclusion problem is called `-exclusion.

There is a simple solution of the `-exclusion problem that employs a mutual exclu-

sion algorithm. This solution uses a queue of processes waiting to acquire one of the

` available instances of a resource. Once there is an instance of the resource available,

the process at the head of the queue is allowed to acquire that resource. Access to the

queue is synchronized by the mutual exclusion algorithm. Although this solution cor-

rectly implements the `-exclusion problem, use of that solution leads to degradation

of performance in cases when several resources are available for immediate assignment

to processes that are already waiting to enter their critical sections. If the process

waiting at the head of the queue is slow or delays its execution, the next waiting pro-

cess is prohibited from leaving the queue, entering its critical section, and acquiring

another available instance of the resource. Such a solution lacks concurrency, which

is a limitation, particularly in distributed fault tolerant systems. In (1979), Fischer,

Lynch, Burns, and Borodin present several solutions of the `-exclusion problem with

5

different degrees of concurrency and robustness properties.

In 1986, Lamport introduced the notions of safe, regular, and atomic registers, see

Lamport (1986c, 1986d). In his seminal work, Lamport analyzed the means of com-

munication in truly distributed systems. When a shared register is implemented in

hardware, assumptions about the relative speeds of the communicating processes are

made, and delays are introduced into the system to synchronize accesses to a shared

register. At a higher level of data sharing, particularly in distributed systems, when

the communicating processes are running at vastly different speeds, the wait and de-

lay approach can lead to a substantial degradation of concurrency and performance

of the system. When no assumptions about the relative speeds of the communicating

processes are made, a shared register implementation cannot rely upon any delays.

Then, three classes of register implementation are possible, see Lamport (1986d).

The weakest possibility is a safe register, for which it is assumed only that a read

operation that is not concurrent with any write operation returns the correct, i.e.,

the most recently written value. If there is a concurrent write operation, the read

operation returns any of the admissible values for the register.

The next stronger possibility is a regular register. If a read operation is not

concurrent with any write operation, the most recently written value is returned as

in the case of a safe register. If a read operation is concurrent with one or more write

operations, then the read operation returns either the old value, i.e., the value that

had been most recently written to the register before the read operation started, or

one of the new values that have been written to the register concurrently with the

read operation. As a consequence, when a write operation is concurrent with two

read operations, it is possible that the first read operation returns the new value, but

the second read operation returns the old value.

The last possibility is an atomic register. It is a safe register in which all read

and write operations behave as if there were no concurrent operations in the system.

6

In other words, it is possible to find some sequential ordering of operations such that

the results of the operations executed concurrently will be the same as the results of

the operations executed in that sequential order. Consequently, once a read returns

a new value, all subsequent reads operations return either the new value or even a

newer value.

There is another criterion according to which one can categorize shared registers.

A register can be read by a single process only or by multiple processes. Similarly, a

register can be written by one or multiple processes. To express this fact we describe

registers as single/multiple-reader and single/multiple writer registers. For example,

a single-writer multiple-reader register is a register that can be written by only one

process, but multiple processes can read the contents of that register.

7

Chapter 3

Self-Stabilizing `-Exclusion

There have been very few attempts to design a self-stabilizing solution to the

mutual exclusion problem. The first self-stabilizing mutual exclusion algorithm was

given by Dijkstra (1974). His solution uses the ring-shaped topology of process com-

munication, the shared memory model, and a special node running a different version

of the algorithm than the remaining nodes. Although his solution is of limited prac-

tical use, it showed the existence of self-stabilizing algorithms and their usefulness in

fault tolerant systems.

A major contribution to solving the problem of self-stabilizing mutual exclusion

was made by Lamport (1986b). In his work, he defined several properties and require-

ments that one might impose on a mutual exclusion algorithm and presented three

self-stabilizing solutions of the mutual exclusion problem, each of them satisfying

a stronger set of the requirements. For example, his one-bit solution satisfies the ba-

sic mutual exclusion and deadlock freedom properties. The three-bit solution satisfies

all the properties of the one-bit solution plus it satisfies the strong-fairness property,

i.e., a process trying to enter the critical section infinitely often will be in the critical

section infinitely often. If a system consists of N concurrent processes competing for

a resource, the N -bit solution given by Lamport (1986b) satisfies all the requirements

imposed on the three-bit solution and also the first-come, first-served requirement on

the order of processes that try to enter the critical section.

8

The self-stabilizing solution of the mutual exclusion problem of Dijkstra (1974)

was generalized by Flatebo, Datta, and Schoone (1994). In that paper, the authors

implement the self-stabilizing `-exclusion problem using the token-ring communica-

tion topology. In their implementation, all processes including those that are not

interested in entering the critical section have to participate in passing the token in

the ring. Consequently, the system is not able to self-stabilize in case of a perma-

nent failure of one of the processes. This is a drawback of their solution. Also the

prescribed ring communication topology is of limited use.

The first fully satisfiable self-stabilizing `-exclusion algorithm was published by

Abraham, Dolev, Herman, and Koll (2001). (A preliminary version of the paper

was published in 1997). The algorithm there satisfies all the `-exclusion and self-

stabilization requirements, tolerates crashes of processes, and uses a set of single-

writer multiple-reader regular registers. A detailed description of the problem follows.

Assume there exist N processes that share ` < N instances of a resource. When a

process intends to use an instance of the resource, it executes a so-called trying section

in order to obtain permission to use the resource. After obtaining the permission,

it executes its critical section, and thereafter a so-called exit section, which is an

obligation to release the resource. Thereafter, the process executes its remainder

section where it does not use the shared resource. Thus, the structure of a program

that executes the `-exclusion algorithm can be described as follows.

repeat forever

begin

trying section

critical section

exit section

remainder section

end

9

A solution to the `-exclusion problem is an algorithm for the trying and exit sec-

tions that satisfies the `-exclusion requirements. A self-stabilizing `-exclusion algo-

rithm can start in any arbitrary state and after a finite amount of time the `-exclusion

property holds and thereafter remains to hold. Thus, a self-stabilizing algorithm can

recover from transient faults that leave the system in an illegal state. The algo-

rithm by Abraham, Dolev, Herman, and Koll (2001) also tolerates up to ` crashes of

processes.

A process crashes when it stops executing its code. If a crash occurs, the local

variables and shared registers of that process are assumed to be set to arbitrary values.

Thereafter, the process does not modify the contents of its variables and registers.

From the point of view of another process, it is undistinguishable whether a process is

crashed in its remainder section or it is executing its remainder section forever. The

same holds for a process crashed in or forever executing its critical section. Whether

a process is in its critical or remainder section is determined by the values recorded

in shared registers.

A process exhibits a transient failure when it sets its local variables or shared

registers or both to some arbitrary values, but, thereafter, it continues executing its

code. Because of the random modification of values in the local variables and shared

registers, the failed process as well as the other processes in the system can be in

an illegal state and behave incorrectly. Yet, because of self-stabilization, the system

eventually reaches a legitimate state and thereafter behaves correctly.

In our correctness proof, we may assume the system starts in an arbitrary state.

This reflects the state of the system after the last crash or transient fault. We have

to establish that the properties of a self-stabilizing `-exclusion hold. Those properties

have been formulated by Abraham, Dolev, Herman, and Koll (2001) as follows.

Requirement 1 (Safety): If no more than ` processes are crashed, then eventually

at most ` processes are concurrently in the critical section at every system state.

10

Requirement 2 (Liveness): In an execution in which less than ` processes are

crashed, each non-crashed process that is in the exit section eventually executes the

remainder section and each process that enters the trying section eventually executes

the critical section.

Definition 1 (Self-stabilizing `-exclusion): An `-exclusion algorithm is self-sta-

bilizing if every computation that starts with any arbitrary initial state satisfies the

above safety and liveness requirements.

The algorithm by Abraham, Dolev, Herman, and Koll is designed as a combination

of two main components: the first one implements the safety requirement, and the

second one implements the liveness requirement. In general, the algorithm implements

a mechanism of counting processes that may be in their critical section and introduces

a system of rotating process identities among processes that compete for entering the

critical section in order to maintain liveness.

The liveness requirement is ensured by the so-called isolation algorithm. The goal

of that algorithm is to dynamically order processes in a way that ensures that none

of the processes that are trying to enter the critical section will starve. For that

purpose, the algorithm uses N shared single-writer multiple-reader regular registers,

each of size `. These registers may also be viewed as an N × ` matrix ORD of binary

variables. Furthermore, an array X of shared boolean registers is employed to keep

track of processes that are interested in entering their critical section. Each process Pi

writes row i of matrix ORD and modifies element Xi of the array X. If element Xi is

set to false, process Pi is not interested in entering its critical section. Therefore, row

i of matrix ORD is eliminated from the process of computing the dynamic identity.

The dynamic identities are computed as follows: After the rows corresponding to

the processes that are not interested in entering their critical sections are eliminated,

the first column of the matrix is used to compute the identity of the process that can

11

enter the critical section with the highest priority. If the value of the first element

in that column is the same as the value in the last element of the column, the index

of that first element identifies the highest priority process. Otherwise, the algorithm

finds the minimal index in that column such that the corresponding element contains

a value that differs from the value in the first element. That index identifies the

highest priority process. Subsequently, the row of the process that has been selected

above is eliminated from matrix ORD and the same algorithm is applied on the second

column to determine the process with the next highest priority. The algorithm stops

when all ` columns are used to determine process priorities or when there are no more

processes competing for a shared resource.

Once a process Pi leaves its critical section, it modifies its row in matrix ORD,

thereby enabling other processes to enter their critical sections before process Pi will

be granted access to its critical section again. If process Pi is crashed, it does not

modify its row in matrix ORD. Because non-crashed processes rotate the values

in columns of matrix ORD, eventually the isolation algorithm will assign a highest

priority to process Pi. If less than ` processes are crashed in the system, the non-

crashed processes will compete for those resources that are not consumed by the

crashed processes.

The safety requirement is implemented by the so-called safe algorithm. The main

goal of this component is to count the processes that may be in their critical sections

and, if the count exceeds `, to disallow the process to enter. To count the processes

that are in the critical section the algorithm employs a shared array TRY of regular

boolean registers. When an element with index i (denoted TRYi) is set to true,

process Pi may be in its critical section. When TRYi is false, Pi is outside of its

critical section.

When a slow running process Pi reads the contents of array TRY, the read values

may indicate that a fast running process Pj is continuously in its critical section. In

12

begin

d1 read-all-VEC (v);

d2 vector := report(v);

d3 write(VECi := vector);

d4 read-all-VEC (v);

end

Figure 3.1: Diagonal algorithm

reality, process Pj repeatedly enters and leaves its critical section. Because process Pi

may always read the register TRYj at the moment when Pj is in its critical section,

it may wait forever for the permission to enter.

To ensure that a slow process will eventually enter the critical section, the safe

algorithm employs the so-called diagonal algorithm. The diagonal algorithm keeps

track of fast processes. Fast processes are not counted by slow processes as being

in the critical section. A slow process assumes that a fast process will correctly

determine which processes are in the critical section. If ` processes are already in the

critical section, the fast process will not enter its critical section. In the following

paragraphs, we explain how the diagonal algorithm works.

As before, assume there are N processes P1, . . . , PN in the system. Each process

is identified by its index i. We define a color as an integer in [0, . . . , 2N − 1]. To

determine if a process runs fast, the diagonal algorithm uses the assumption that

a fast process frequently modifies its shared registers. For that purpose, the diagonal

algorithm uses a set of N regular vectors. This set of vectors is represented by matrix

VEC with N rows. Row i of the matrix is a regular vector denoted by VECi.

Let i be an index of process Pi and vi be the row with index i of matrix VEC.

For indices j 6= i, we define element vi[j] to be a pair of colors denoted vi[j].first and

vi[j].second, and the element vi[i] to be a single value denoted vi[i].color . Hereafter,

13

function report(v) (by process Pi)

begin

select d ∈ {color | 0 ≤ color ≤ 2N − 1 ∧ color 6= vi[i].color

∧ color /∈ ⋃
i6=j{vj[i].first, vj[i].second}};

vector [i]:= d;

forall 1≤j≤N ∧ j 6=i concurrently do

vector [j].second := vector [j].first;

vector [j].first := vj[j].color;

return vector ;

end

Figure 3.2: Implementation of function report

the value of vi[i].color is called the color of process Pi.

Let Pi and Pj, i 6= j, be two processes executing the diagonal algorithm and

vi and vj be the vectors containing the values of rows VECi and VECj, respec-

tively. As defined by Abraham, Dolev, Herman, and Koll in (2001), process Pi

dominates Pj if vi[j].first = vi[j].second = vj[j].color . For example, if N = 4,

v2 = ((3, 8), 3, (7, 4), (1, 1)), and v4 = ((2, 2), (5, 5), (6, 1), 1), then process P2 dom-

inates P4, but process P4 does not dominate P2.

The basic idea behind the diagonal algorithm in Figure 3.1 is the following. As

the process Pi runs, it repeatedly executes the statements at locations d1, d2,d3,

and d4. When the statement at location d2 is executed, a new, unused color of

process Pi is selected and recorded in vector [i].color . At the same time, current and

previously current colors of every other process Pj are recorded in vector [j].first and

vector [j].second. At the moment vector is written to VECi, no other process can

dominate Pi because the equality from the definition of process domination cannot

hold. On the other hand, process Pi may dominate a process Pj if process Pj did not

14

procedure read-all-VEC (v)

begin

forall 1≤j≤N concurrently do

read(vj := VECj);

end

Figure 3.3: Implementation of procedure read-all-VEC

write a new color recently. In that case, process Pi may determine that the current

color of process Pj is the same as the recorded current and previously current colors.

The actual implementation of the diagonal algorithm (see Figure 3.1) uses two

local variables. Matrix v is a local copy of the matrix VEC, and vector is an array used

to compute the new value of the vector VECi. The algorithm uses two subroutines.

Function report(v) (in Figure 3.2) is used to compute the new value of variable vector ,

and procedure read-all-VEC (v) (in Figure 3.3) is used to read the values of matrix

VEC into local variable v. When process Pi executes the diagonal algorithm, it

repeatedly reads the shared matrix VEC and records those values into v. Then it

invokes the function report(v) to determine the value of vector . Thereafter, that value

is written to VECi.

When function report is executed by process Pi (see Figure 3.2), all values recorded

in column i of matrix v are collected. There are 2N−1 elements in that column (N−1

pairs in rows different from i and a single element in row i). Function report selects

a new color d that is not used in that column. Such a color exists, because there are

2N colors in total, but at most 2N−1 occur in the column under consideration. Then

the new color d is recorded in element vector [i].color . Later, when the statement at

location d3 (see Figure 3.1) is executed, that color is recorded in VECi[i].color . The

rest of the values of vector are determined as follows: For every index j, j 6= i,

the algorithm shifts the color vector [j].first into vector [j].second and writes color

15

begin

c1 try := false;

c2 write(TRYi := false);

c3 repeat

c3.1 read-all-VEC (v);

c3.2 vector := report(v);

c3.3 old-try := try ;

c3.4 try := getTry();

c3.5 write(TRYi := try);

c3.6 if try ∧ ¬old-try then write(VECi := vector);

c4 until try ;

c5 concurrently do

begin read-all-VEC (v); read-all-TRY (t)) end

c6 B := {j | tj ∧ ¬(vi dominates vj)}
c7 if |B| > ` then goto c3;

c8 CRITICAL SECTION

c9 write(TRYi := false);

c10 write(Xi := false);

c11 v:= change order(M , i);

c12 write(ORDi := v);

end

Figure 3.4: Combined algorithm

16

vj[j].color into vector [j].first. Thus, process Pi records in vector [j].first the most

recently read color of process Pj and in vector [j].second the previously read color of

process Pj.

In Figure 3.4, we give the combined self-stabilizing `-exclusion algorithm. We

use frames to mark the statements that are part of the diagonal algorithm in Figure

3.1. The combined algorithm is complicated. This prospectus gives only a high-level

overview of the self-stabilizing `-exclusion algorithm. A complete description of that

algorithm will be given in the dissertation thesis. At this moment, we use the code

of the combined algorithm to illustrate how the safe and liveness components are

combined and how the diagonal algorithm is embedded in the safe algorithm.

The safe algorithm is formed by the statements at locations c1– c3.3 and c3.5– c9.

The diagonal algorithm is a part of that safe component. Notice that the statement at

location d1 of the diagonal algorithm (Figure 3.1) appears at location c3.1 of the safe

algorithm. Similarly, location d2 maps to c3.2, location d3 maps to c3.5, and location

d4 maps to c5. The correspondence between the statements of the safe and the

diagonal algorithms and the fact that the variables used in the diagonal algorithm

are not modified anywhere else in the code of the combined algorithm lead us to

a conclusion that it will be possible to formulate and prove most of the properties

about the diagonal algorithm independently of the safe and combined algorithms and

reuse those properties later to reason about the safe and combined algorithms.

The isolation algorithm is implemented by the statements at locations c3.4, c10,

c11, and c12. Function getTry (at location c3.4) implements the main part of the isola-

tion algorithm and returns true only if the isolation algorithm determines that process

Pi has high enough priority to enter the critical section. Procedure change order (at

location c11) implements the rotation of the process identities. We omit the imple-

mentation of both these functions from this prospectus, because they are complicated.

The reader can find the code in Abraham, Dolev, Herman, and Koll (2001). A detailed

17

description of these functions will appear in the dissertation thesis.

Similar to the diagonal algorithm, the isolation algorithm is also embedded in the

combined algorithm through some mapping. We envision that this will allow us to

develop a correctness proof of the isolation algorithm independently and later carry

the properties over on the combined algorithm.

An essential part of the combined algorithm can be found at locations c6 and c7

in Figure 3.4. At location c6 the algorithm counts all processes that are attempting

to enter the critical section. Those processes have to receive permission from the

isolation algorithm, i.e., function getTry must return true. The contents of variable

try is subsequently written into the register TRYi. A local copy of array TRY is

kept in variable t and, at location c6, used to determine the number of processes

that are attempting to enter the critical section. A process Pj is excluded from being

counted by process Pi if it dominates to Pi. The reason for that is that, otherwise,

slow running processes could starve, as it has been explained earlier in this chapter.

At location c7, if the number of processes that could be in the critical section does

not exceed `, process Pi is allowed to enter the critical section. After the process

leaves its critical section it resets its register TRYi and rotates identities to allow

other processes to enter their critical section.

18

Chapter 4

Proposed Research Goals and Methodology

As we saw in the previous chapter, the self-stabilizing `-exclusion algorithm is

complicated. The complexity of that algorithm as well as the importance of its

correctness justify the need of a rigorous correctness proof of that algorithm. This is

the main aim of the dissertation thesis.

In the first phase, we have focused our research on understanding and analyzing

the algorithm, as it has been described by Abraham, Dolev, Herman, and Koll in

(1997, 2001). We have already spent a substantial amount of time on the analysis of

the components of that algorithm, and presently we understand all basic properties

and behavior of the entire algorithm. For designing a correctness proof, however,

many more properties of the algorithm will need to be discovered, formulated, and

proved.

In the next phase, which is still a preparatory phase for correctness proof devel-

opment, we have worked on the computational model of the system. The standard

model employs states and histories. A state is a mapping from variables to values. A

history records events in the system that are related to access to the shared registers.

The program is represented by a guarded command language similar to UNITY. For

a description of the UNITY notation see Chandy and Misra (1988). The program

semantics is the usual semantics of a UNITY program. The only two operations for

which the semantics has to be defined are the regular register read and write op-

19

erations. These operations are not atomic when used to access regular registers and

their semantics has to reflect this fact. Therefore, the initialization and the termina-

tion of those operations have to be recorded in the history. At this moment, we are

also considering to assume that the `-exclusion algorithm employs atomic registers

instead of regular registers. If we opt for this register representation, we will be able

to simplify the computational model and semantics of the program. This would also

simplify the correctness proof.

The core phase of our research will be focused on developing a correctness proof

of the self-stabilizing `-exclusion algorithm. We have decided to use Linear Time

Temporal Logic, see Manna and Pnueli (1992, 1995), as the proof design methodology.

Linear Time Temporal Logic allows one to express several temporal properties, such

as the always (2) and the eventually (3) properties. In Linear Time Temporal Logic,

one can also express, using the so-called weak-until (W) operator, that a property

holds until another property holds. In this logic one can reason about non-terminating

executions of the system as well. Therefore, the logic is convenient to use for proof

development of concurrent, non-terminating systems.

There are several other proof methodologies that are used for formal proofs de-

velopment. The first one is the Hoare’s verification method, which is based on Hoare

logic of sequential processes, see Hoare (1969). In Hoare’s method each program

statement is augmented with two state predicates — a precondition and a postcondi-

tion. To show a property is satisfied when a program terminates one has to come up

with strong enough pre- and postconditions for every statement in the program and

show that, when the rules of Hoare logic are applied, the postcondition for the entire

program holds. Because Hoare logic does not offer any means for parallel composition

of processes, it is not directly applicable to concurrent programs. It also does not

allow one to express non-trivial properties and invariants of programs that do not

terminate.

20

Owicki and Gries (1976) generalized Hoare’s verification method to concurrent

systems, where communication takes place through shared variables. In their work,

Owicki and Gries introduced the inference-freedom test to ensure that the assertions

attached to sequential statements are not invalidated by executions of statements

in other processes. Since this method is based, in essence, on the same principles

as Hoare’s verification method, Owicki-Gries method is not suitable for expressing

invariant properties of non-terminating programs.

We plan to develop our correctness proof in several stages, which correspond to

the design of the `-exclusion algorithm. The task of a correctness proof development

is known to be hard. Detailed understanding of the algorithm and its properties is

required. Formulation and proofs of many auxiliary properties are necessary. During

the proof development phase, one may find errors in the algorithm. Should this be

the case, we will attempt to correct the algorithm and develop a correctness proof of

the corrected algorithm.

While a correctness proof is being developed, one may notice that the algorithm

could be improved in some way. For example, it may be possible to use less shared

space to implement the algorithm, or a more efficient version of the code may be sug-

gested. We will pay attention to this issue and if we discover some improvements, we

will incorporate them into the algorithm and give a correctness proof of the improved

version of the algorithm.

We will also pay a close attention to the methods and techniques that we use in our

correctness proof. The algorithm is composed from several independent components

that are nested one into another. We believe it is possible to develop a correctness

proof for each component independently and later combine the proofs together to

a correctness proof of the `-exclusion algorithm. This is a non-trivial issue in proofs

of concurrent algorithms. If the technique of proof composition is generalized, it can

be reused in proofs of many other concurrent algorithms.

21

Chapter 5

Conclusion

In this dissertation prospectus we discussed the self-stabilizing `-exclusion algo-

rithm by Abraham, Dolev, Herman, and Koll (2001). In Chapter 2, we covered the

problem background and some basic concepts employed in the algorithm. The `-

exclusion algorithm was presented in Chapter 3. The proposal and directions of our

research are given in Chapter 4. We propose to develop a correctness proof of the

self-stabilizing `-exclusion algorithm. The correctness proof will allow one to conclude

that the algorithm is correct and reliable. This will allow use of that algorithm for

implementation of distributed self-stabilizing systems that employ `-exclusion as the

means of process synchronization.

22

Bibliography

Abadi, M. and L. Lamport (1991). The existence of refinement mappings. Theo-

retical Computer Science 82 (2), 253–284.

Abraham, U. (1995). On interprocess communication and the implementation of

multi-writer atomic registers. Theoretical Computer Science 149 (2), 257–298.

Abraham, U., S. Dolev, T. Herman, and I. Koll (1997). Self-stabilizing `-exclusion.

In Proceedings of the Third Workshop on Self-Stabilizing Systems, pp. 48–63.

Carleton University Press.

Abraham, U., S. Dolev, T. Herman, and I. Koll (2001). Self-stabilizing `-exclusion.

Theoretical Computer Science 266 (1–2), 653–692.

Afek, Y., D. Dolev, E. Gafni, M. Merritt, and N. Shavit (1994). A bounded first-in,

first-enabled solution to the `-exclusion problem. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 16 (3), 939–953.

Beauquier, J. and S. Kekkonen-Moneta (1997). Fault-tolerance and self-stabili-

zation: Impossibility results and solutions using self-stabilizing failure detectors.

International Journal of Systems Science 28 (11), 1177–1187.

Burns, J. E., M. G. Gouda, and R. E. Miller (1993). Stabilization and pseudo-

stabilization. Distributed Computing 7, 35–42.

Chandy, K. M. and J. Misra (1988). Parallel Program Design: A Foundation.

Addison-Wesley.

Cypher, R. (1995). The communication requirements of mutual exclusion. In Pro-

23

ceedings of the 7th Annual ACM Symposium on Parallel Algorithms and Archi-

tectures SPAA’95, Santa Barbara, California, pp. 147–156.

de Roever, W.-P., F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,

and J. Zwiers (2001). Concurrency Verification: Introduction to Compositional

and Noncompositional Methods. Cambridge University Press.

Debest, X. A. (1995). Remark about self-stabilizing systems. Communications of

the ACM 38 (2), 115–117.

Dijkstra, E. W. (1965). Solution of a problem in concurrent programming control.

Communications of the ACM 8 (9), 569.

Dijkstra, E. W. (1974). Self-stabilizing systems in spite of distributed control. Com-

munications of the ACM 17 (11), 643–644.

Dolev, S. (2000). Self-Stabilization. MIT Press.

Dolev, S. and T. Herman (2001). Dijkstra’s self-stabilizing algorithm in unsupport-

ive environments. Lecture Notes in Computer Science 2194, 67–81.

Dolev, S., A. Israeli, and S. Moran (1993). Self-stabilization of dynamic systems

assuming only read/write atomicity. Distributed Computing 7, 3–16.

Fischer, M. J., N. A. Lynch, J. E. Burns, and A. Borodin (1979). Resource alloca-

tion with immunity to limited process failure. In Proceedings of the 20th Annual

Symposium on Foundations of Computer Science, pp. 234–254. IEEE.

Fischer, M. J., N. A. Lynch, J. E. Burns, and A. Borodin (1989). Distributed FIFO

allocation of identical resources using small shared space. ACM Transactions

on Programming Languages and Systems (TOPLAS) 11 (1), 90–114.

Flatebo, M., A. K. Datta, and A. A. Schoone (1994). Self-stabilizing multi-token

rings. Distributed Computing 8 (3), 133–142.

24

Gouda, M. G. (1995). The Triumph and Tribulation of System Stabilization, Volume

972 of Lecture Notes in Computer Science, pp. 1–18. Springer-Verlag.

Hailpern, B. and S. S. Owicki (1982). Modular verification of concurrent programs.

In Proceedings of the 9th ACM Symposium on Principles of Programming Lan-

guages, pp. 322–336. ACM Press.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commu-

nications of the ACM 12 (10), 576–580.

Koymans, R., J. Vytopil, and W. P. de Roever (1983). Real-time programming

and asynchronous message passing. In Proceedings of the Second Annual ACM

Symposium on Principles of Distributed Computing, pp. 187–197.

Lamport, L. (1974). A new solution of Dijkstra’s concurrent programming problem.

Communications of the ACM 17 (8), 453–455.

Lamport, L. (1980). The ‘Hoare logic’ of concurrent programs. Acta Informatica 14,

21–37.

Lamport, L. (1983). Reasoning about nonatomic operations. In Proceedings of the

10th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pp. 28–37. ACM Press.

Lamport, L. (1984). 1983 invited address: Solved problems, unsolved problems

and non-problems in concurrency. In Proceedings of the Third Annual ACM

Symposium on Principles of Distributed Computing, pp. 1–11.

Lamport, L. (1986a). The mutual exclusion problem: Part I – A theory of inter-

process communication. Journal of the ACM (JACM) 33 (2), 313–326.

Lamport, L. (1986b). The mutual exclusion problem: Part II – Statement and

solutions. Journal of the ACM (JACM) 33 (2), 327–348.

Lamport, L. (1986c). On interprocess communication, part I: Basic formalism.

25

Distributed Computing 1 (2), 77–85.

Lamport, L. (1986d). On interprocess communication, part II: Algorithms. Dis-

tributed Computing 1 (2), 86–101.

Lamport, L. (1987). A fast mutual exclusion algorithm. ACM Transactions on

Computer Systems (TOCS) 5 (1), 1–11.

Lamport, L. (1994). The temporal logic of actions. ACM Transactions on Program-

ming Languages and Systems 16 (3), 872–923.

Lamport, L. and N. Lynch (1990). Distributed Computing: Models and Methods,

pp. 1157–1199. MIT Press.

Lycklama, E. A. and V. Hadzilacos (1991). A first-come-first-served mutual-

exclusion algorithm with small communication variables. ACM Transactions

on Programming Languages and Systems (TOPLAS) 13 (4), 558–576.

Lynch, N. A. (1997). Distributed Algorithms (Data Management Series). Morgan

Kaufmann Publishers.

Manna, Z. and A. Pnueli (1983). How to cook a temporal proof system for your

pet language. In Proceedings of the 10th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pp. 141–154. ACM Press.

Manna, Z. and A. Pnueli (1992). The Temporal Logic of Reactive and Concurrent

Systems: Specification. Springer-Verlag.

Manna, Z. and A. Pnueli (1995). Temporal Verification of Reactive Systems: Safety.

Springer-Verlag.

Owicki, S. S. and D. Gries (1976). An axiomatic proof technique for parallel pro-

grams. Acta Informatica 6, 319–340.

Peterson, G. L. (1981). Myths about the mutual exclusion problem. Information

Processing Letters 12 (3), 115–116.

26

Pnueli, A. (1981). The temporal semantics of concurrent programs. Theoretical

Computer Science 13 (1), 45–60.

